

Robotics I: Introduction to Robotics Excercise 6 – Image Processing

Christian Marzi, Tamim Asfour

http://www.humanoids.kit.edu

www.kit.edu

Content

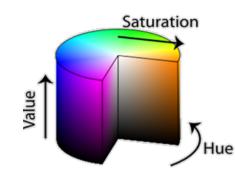
Task 1

Color Representation

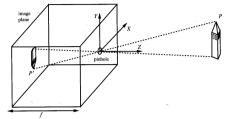
Task 2

Camera Model

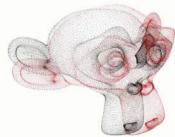
Task 3

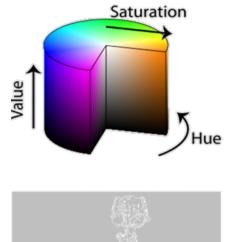

Filters in Image Processing

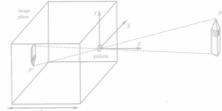
Task 4


Segmentation

Task 5


Iterative Closest Point (ICP) Algorithm

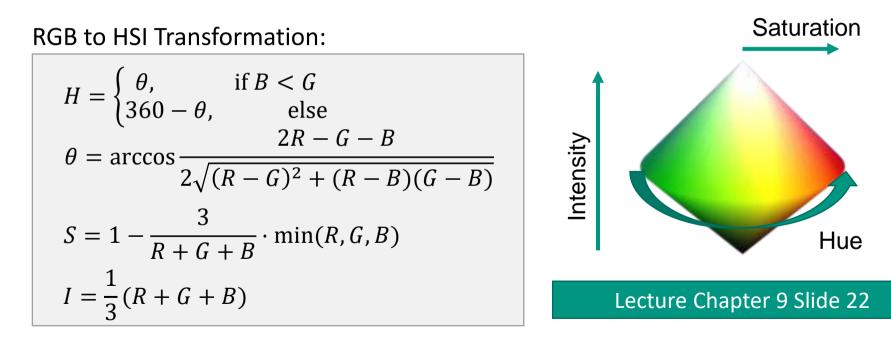



Segmentation

Task 5

Iterative Closest Point (ICP) Algorithm

Task 1


- 1. Transform the following colors specified in the RGB model into the HSI format.
 - 1. (120, 80, 210)
 - 2. (0, 150, 130)
- 2. A robot observes at a pack of cereal in a windowless laboratory. Someone turns the light a little brighter.
 - 1. Do the R, G or B values of the cereal package change?
 - 2. Do the H, S or I values of the cereal package change?
- 3. The robot observes the pack in a kitchen with windows. Outside, a cloud pushes in front of the sun.
 - 1. Do the R, G or B values of the cereal package change?
 - 2. Do the H, S or I values of the cereal package change?

HSI Color Representation

Transform the following colors specified in the RGB model into the HSI format.

Calculating Hue

R:120, G: 80, **B**: 210

$$H = \begin{cases} \theta, & \text{if } B < G\\ 360 - \theta, & \text{else} \end{cases}$$
$$\theta = \arccos \frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}$$
$$S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B)$$
$$I = \frac{1}{3}(R + G + B)$$

R:120, G: 80, B: 210

B < G?

$120 \not < 80 \Rightarrow H = 360 - \theta$

Calculating Hue

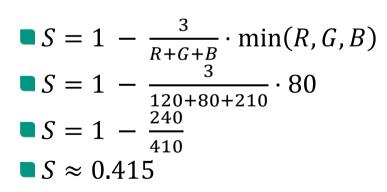
$$H = 360 - \theta$$

•
$$\theta = \cos^{-1} \left(\frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}} \right)$$

• $\theta = \cos^{-1} \left(\frac{240 - 80 - 210}{2\sqrt{(120 - 80)^2 + (120 - 210)(80 - 210)}} \right)$
• $\theta = \cos^{-1} \left(\frac{-50}{2\sqrt{1600 + 11700}} \right)$
• $\theta \approx \cos^{-1} (-0.2168)$
• $\theta \approx 102.5^{\circ}$
• $H = 360^{\circ} - \theta \approx 257.5^{\circ}$

$$H = \begin{cases} \theta, & \text{if } B < G\\ 360 - \theta, & \text{else} \end{cases}$$
$$\theta = \arccos \frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}$$
$$S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B)$$
$$I = \frac{1}{3}(R + G + B)$$

R:120, G: 80, B: 210



Calculating Saturation und Intensity

$$H = \begin{cases} \theta, & \text{if } B < G\\ 360 - \theta, & \text{else} \end{cases}$$
$$\theta = \arccos \frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}$$
$$S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B)$$
$$I = \frac{1}{3}(R + G + B)$$

R:120, G: 80, B: 210

Color in HIS: H: 257.5°, S: 0.415 , I: 136.7

R+G+B

 $I = \frac{410}{1}$

 $I \approx 136.7$

Calculating Hue

FARBEN 08

R:0, G: 150, **B: 130**

B <

130 < 150

CMYK: 0/0/70 RGB: 64/64/64 Hexadezimal: #404040

https://kit-cd.sts.kit.edu/index.php

Calculating Hue

$$H = \theta$$

$$\theta = \cos^{-1} \left(\frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}} \right)$$

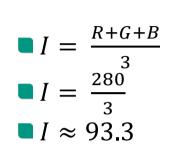
$$\theta = \cos^{-1} \left(\frac{-150 - 130}{2\sqrt{(-150)^2 + (0 - 130)(150 - 130)}} \right)$$

$$\theta = \cos^{-1} \left(\frac{-280}{2\sqrt{22500 - 2600}} \right)$$

$$\theta \approx \cos^{-1} \left(-0.9924 \right)$$

$$\theta \approx 172.9^{\circ}$$

$$\Rightarrow H = \theta \approx 172.9^{\circ}$$


$$H = \begin{cases} \theta, & \text{falls } B < G\\ 360 - \theta, & \text{sonst} \end{cases}$$
$$\theta = \arccos \frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}$$
$$S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B)$$
$$I = \frac{1}{3}(R + G + B)$$

R:0, G: 150, B: 130

Saturation und Intensity

S = 1

$$H = \begin{cases} \theta, & \text{falls } B < G\\ 360 - \theta, & \text{sonst} \end{cases}$$
$$\theta = \arccos \frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}$$
$$S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B)$$
$$I = \frac{1}{3}(R + G + B)$$

R:0, G: 150, B: 130

Color in HIS: H: 257.5°, S: 1 , I: 93.3

 $\blacksquare S = 1 - \frac{3}{R+G+B}\min(R, G, B)$

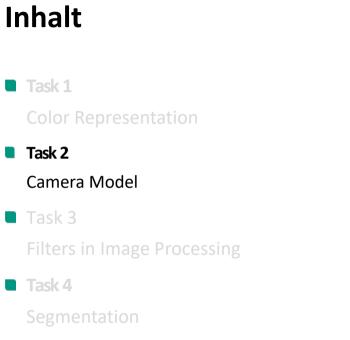
Color Value Changes

A robot observes at a pack of cereal in a windowless laboratory. Someone turns the light a little brighter.

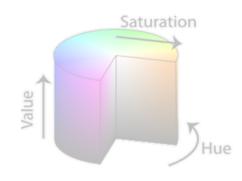
- 1. Do the R, G or B values of the cereal package change?
- 2. Do the H, S or I values of the cereal package change?

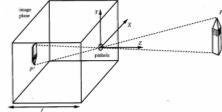
R, G and B change evenly, i.e. increase or decrease by the same factor. H and S remain unchanged, I changes according to the change in brightness.

Color Value Changes


The robot observes the pack in a kitchen with windows. Outside, a cloud pushes in front of the sun.

- 1. Do the R, G or B values of the cereal package change?
- 2. Do the H, S or I values of the cereal package change?

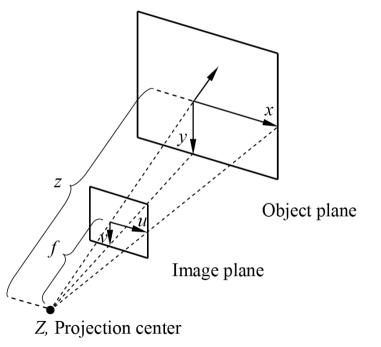

As not only the light intensity but also the color spectrum of the light changes here, all values, including H and S, change - although in most cases significantly less than the RGB values.



Task 5

Iterative Closest Point (ICP) Algorithm

Task 2



- Given a pinhole camera in positive position with focal length f = 20 mm
 - You use it to photograph a building from a distance of 350 m. In the picture, the building is 0.8 mm high. How high is the actual building?
 - You are taking a photo of Cologne Cathedral, which is known to be $100\frac{\pi}{2}$ m high, from the opposite bank of the Rhine from a distance of 800 m. In your photo, the cathedral is 314 pixels high. How many pixels per millimeter does the camera have?

• Given a pinhole camera in positive position with focal length f = 20 mm

$$\binom{u}{v} = \frac{f}{z} \binom{x}{y}$$

Lecture Chapter 9 Slide 36

You use it to photograph a building from a distance of 350 m. In the image, the building is 0.8 mm high. How high is the actual building?

•
$$v = \frac{f}{z} y$$

• $y = v \frac{z}{f}$
• $y = 0.8 \text{ mm} \cdot \frac{350 \text{ m}}{20 \text{ mm}}$
• $y = 0.8 \cdot \frac{350}{20} \text{ m}$
• $y = 0.4 \cdot 35 \text{ m} = 14 \text{ m}$

$$\binom{u}{v} = \frac{f}{z} \binom{x}{y}$$

You are taking a photo of Cologne Cathedral, which is known to be $100\frac{\pi}{2}$ m high, from the opposite bank of the Rhine from a distance of 800 m. In your photo, the cathedral is 314 pixels high. How many pixels per millimeter does the camera have?

$$\binom{u}{v} = \frac{f}{z} \binom{x}{y}$$

You are taking a photo of Cologne Cathedral, which is known to be $100\frac{\pi}{2}$ m high, from the opposite bank of the Rhine from a distance of 800 m. In your photo, the cathedral is 314 pixels high. How many pixels per millimeter does the camera have?

y =
$$100 \cdot \frac{\pi}{2} \ m \approx 157 \ m, z = 800 \ m, v \text{ corresponds to } 314 \ px$$
v = $\frac{f}{z}y = \frac{20 \ \text{mm}}{800 \ \text{m}} 100 \cdot \frac{\pi}{2} \ m = \frac{100 \ \pi}{80} \ mm$
314 px $\triangleq \frac{314}{80} \ mm$
1 px $\triangleq \frac{1}{80} \ mm$
80 px $\triangleq 1 \ \text{mm}$
The camera has $80 \ \frac{px}{mm}$

 $\binom{u}{v} = \frac{f}{z} \binom{x}{y}$

As a camera spec this is also often denoted as inverse value:

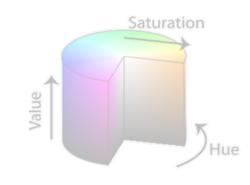
• Pixel pitch $\frac{1}{80px/mm} = 12,5\mu m$

Content

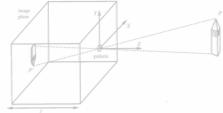
Task 1 Color Representation

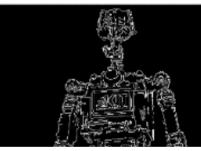
Task 2 Camera Model

Task 3

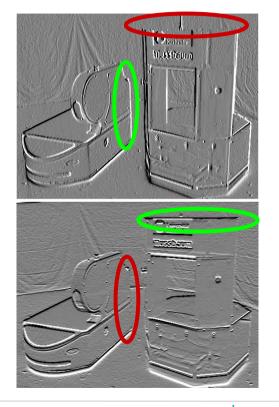

Filters in Image Processing

Task 4


Segmentation


Task 5

Iterative Closest Point (ICP) Algorithm


Filtering – Prewitt

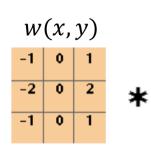
Prewitt-X Filter $P_{x} = \frac{\partial g(x,y)}{\partial x}$ Approximated by $p_{x} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ Prewitt-Y Filter $P_{y} = \frac{\partial g(x,y)}{\partial y}$ Approximated by $p_{y} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

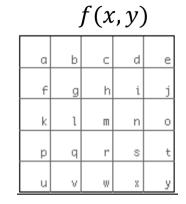
Properties:

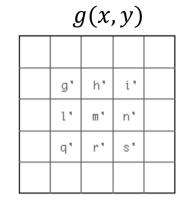
Good results for the detections of vertical or horizontal edges

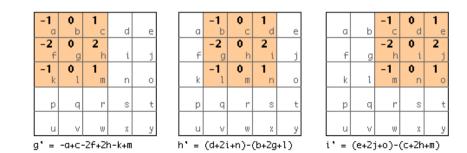
Lecture Chapter 9 Slide 83

Given the following gray-scale image B


	/20	20	20	20	40	40	40	40	30	30	30\
	20	20	20	20	40	40	40	40	30	30	30 30
	20	20									30
B =	50	50	50	50	50	50	50	50	20	20	20
	20	50	50	50	50	50	50	50	20	20	20
	20	20									20
	\ ₂₀	20	20	50	50	50	50	50	20	20	20/


Calculate the result of filtering *B* with a Prewitt-X Filter


Calculate the result of filtering B with a Prewitt-Y Filter


Application of a Filter

$$m' = -g + i - 2l + 2n - q + s$$

Filter as correlation

	/20	20	20	20	40	40	40	40	30	30	30\
	20	20 20	20	20	40	40	40	40	30	30	30
	20	20	20	20	40	40	40	40	30	30	30
B =	50	50	50	50	50	50	50	50	20	20	20
	20	50	50	50	50	50	50	50	20	20	20
	20	20	50	50	50	50	50	50	20	20	20 /
	\20	20	20	50	50	50	50	50	20	20	20/

Prewitt Edge Detektor in x-direction:

$$p_{\chi} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

$$B_{X}(2,2) = -1B(1,1) + 0B(1,2) + 1B(1,3) - 1B(2,1) + 0B(2,2) + 1B(2,3) - 1B(3,1) + 0B(3,2) + 1B(3,3)$$

$$= -20 + 0 + 20 - 20 + 0 + 20 - 20 + 0 + 20 - 20 + 0 + 20 = 0$$

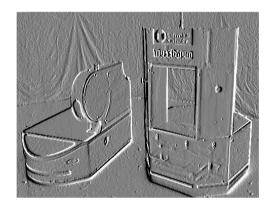
$$B_{X}(2,3) = -20 + 0 + 20 - 20 + 0 + 20 - 20 + 0 + 20 = 0$$

$$B_{X}(2,4) = -20 + 0 + 40 - 20 + 0 + 40 - 20 + 0 + 40 = 60$$

	/20*(-1 20*(-1) 20*0) 20*0	20*1 20*1	20 20	40 40	40 40	40 40	40 40	30 30	30 30	30 30
	20*(-1) 20*0	20*1	20	40	40	40	40	30	30	30
B =	50	50	50	50	50	50	50	50	20	20	20
	20	50	50		50					20	20
	20	20	50	50	50	50	50		20	20	20
	\ 20	20	20	50	50	50	50	50	20	20	20/

Prewitt Edge Detektor in x-direction:

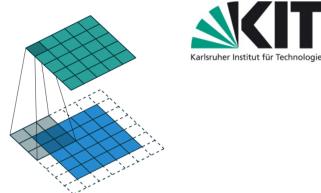
$$p_{\chi} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$



$$B_{\chi} = \begin{pmatrix} 0 & 0 & 60 & 60 & 0 & 0 & -30 & -30 & 0 \\ 0 & 0 & 40 & 40 & 0 & 0 & -50 & -50 & 0 \\ 30 & 0 & 20 & 20 & 0 & 0 & -70 & -70 & 0 \\ 60 & 30 & 0 & 0 & 0 & 0 & -90 & -90 & 0 \\ 60 & 60 & 30 & 0 & 0 & 0 & -90 & -90 & 0 \end{pmatrix}$$

- Extra Questions:
 - Which Color is 0?
 - Which Color is -90?

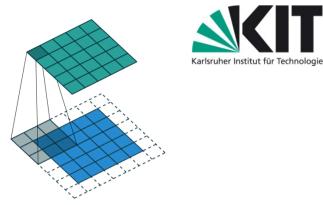
Not a regular color space but a representation of the edges! But can be transformed in an image


How can I keep the resulting image the same size? → Padding

Constant value (e.g. 0): Image is extended by value 0 pixels

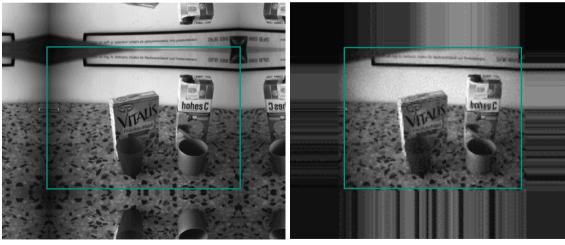
Wrap: Image is repeated

Constant



Wrap

How can I keep the resulting image the same size? → Padding



Mirror, Reflect:

Image is mirrored at the edges

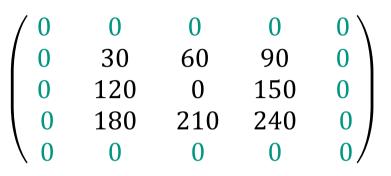
Clamp, Replicate: Take the last value

42

Mirror

Padding

Input image


Example: Mean filter using:

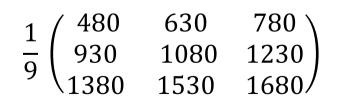
1/	1 1	1\
$\frac{1}{9} \left(\frac{1}{2} \right)$	1 1	1
9	1 1	1/
/ 30	60	90 \
120	0	150
180	210	240/

Constant:

1	(210	450	300 \
$\frac{1}{9}$	600	1080	750
9	\ 510	900	600 /

Wrap:

/ 240	180	210	240	180 \
90	30	60	90	30
150	120	0	150	120
240	180	210	240	180
\ 90	30	60	90	30 /


1	/ 1080	1080	1080\
$\frac{1}{0}$	$\begin{pmatrix} 1080\\ 1080\\ 1080 \end{pmatrix}$	1080	1080
91	\ 1080	1080	1080/

Mirror/Clamp:

/ 30	30	60	90	90 \
30	30	60	90	90
120	120	0	150	150
180	180	210	240	240
\ 180	180	210	240	240/

No padding:

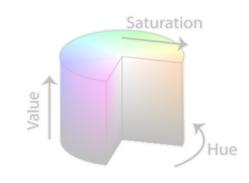
$$\frac{1}{9} \begin{pmatrix} X & X & X \\ X & 1080 & X \\ X & X & X \end{pmatrix}$$

Content

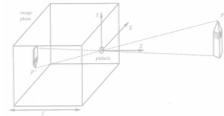
- Task 1
 Color Representation
- Task 2

Camera Model

Task 3


Filter in der Image Processing

Task 4


Segmentation

Task 5

Iterative Closest Point (ICP) Algorithm

In the image in Figure 2 an object should be detected. The image has already been converted to a greyscale image and the intensity values (0 ... 255) are denoted on the pixels. For segmentation, threshold segmentation is applied with a threshold of T = 51.

255	212	74	181	176	176	196	171	156	255	212	74	181	176	176	196	171	156
181	219	23	135	163	56	46	69	56	181	219	23	135	163	56	46	69	56
186	148	79	186	230	163	64	54	84	186	148	79	186	230	163	64	54	84
166	237	69	179	166	69	120	112	245	166	237	69	179	166	69	120	112	245
48	194	194	179	107	117	99	87	43	48	194	194	179	107	117	99	87	43
222	5	186	163	115	77	105	46	71	222	5	186	163	115	77	105	46	71
207	186	10	13	41	48	43	54	201	207	186	10	13	41	48	43	54	201
189	196	89	64	128	71	89	74	54	189	196	89	64	128	71	89	74	54

Segmentation – Threshold Filtering

Threshold filtering to convert a grayscale image into a binary image
 Intensity of each pixel (u,v) is compared to a predefined threshold T

$$Img'(u,v) = \begin{cases} 255, & \text{if } Img(u,v) > T \\ 0, & \text{else} \end{cases}$$

In the image in Figure 2 an object should be detected. The image has already been converted to a greyscale image and the intensity values (0 ... 255) are denoted on the pixels. For segmentation, threshold segmentation is applied with a threshold of T = 51.

181	219	23	135	163	56	46	69	56
186	148	79	186	230	163	64	54	84
166	237	69	179	166	69	120	112	245
48	194	194	179	107	117	99	87	43
222	5	186	163	115	77	105	46	71
207	186	10	13	41	48	43	54	201
189	196	89	64	128	71	89	74	54

$$Img'(u,v) = \begin{cases} 255, & \text{if } Img(u,v) > T \\ 0, & \text{else} \end{cases}$$

•
$$Img(1,1) = 255 \rightarrow Img(1,1) = 255$$

•
$$Img(1,2) = 212 \rightarrow Img(1,2) = 255$$

•
$$Img(1,3) = 74 \rightarrow Img(1,3) = 255$$

..

In the image in Figure 2 an object should be detected. The image has already been converted to a greyscale image and the intensity values (0 ... 255) are denoted on the pixels. For segmentation, threshold segmentation is applied with a threshold of T = 51.

186	148	79	186	230	163	64	54	84
166	237	69	179	166	69	120	112	245
48	194	194	179	107	117	99	87	43
222	5	186	163	115	77	105	46	71
207	186	10	13	41	48	43	54	201
189	196	89	64	128	71	89	74	54

 $Img'(u,v) = \begin{cases} 255, & \text{if } Img(u,v) > T \\ 0, & \text{else} \end{cases}$

•
$$Img(1,1) = 255 \rightarrow Img(1,1) = 255$$

•
$$Img(1,2) = 212 \rightarrow Img(1,2) = 255$$

•
$$Img(1,3) = 74 \rightarrow Img(1,3) = 255$$

- . .
- $Img(2,1) = 181 \rightarrow Img(2,1) = 255$
- $Img(2,2) = 219 \rightarrow Img(2,2) = 255$

•
$$Img(2,3) = 23 \rightarrow Img(2,3) = 0$$

In the image in Figure 2 an object should be detected. The image has already been converted to a greyscale image and the intensity values (0 ... 255) are denoted on the pixels. For segmentation, threshold segmentation is applied with a threshold of T = 51.

 $Img'(u,v) = \begin{cases} 255, & \text{if } Img(u,v) > T \\ 0, & \text{else} \end{cases}$

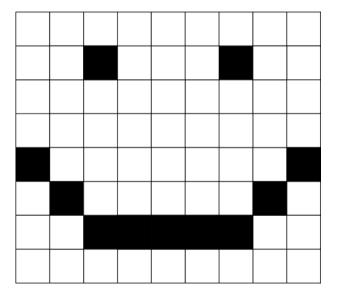
•
$$Img(1,1) = 255 \rightarrow Img(1,1) = 255$$

•
$$Img(1,2) = 212 \rightarrow Img(1,2) = 255$$

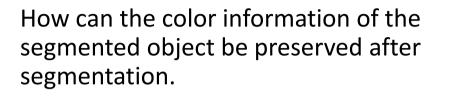
•
$$Img(1,3) = 74 \rightarrow Img(1,3) = 255$$

- •
- $Img(2,1) = 181 \rightarrow Img(2,1) = 255$
- $Img(2,2) = 219 \rightarrow Img(2,2) = 255$

•
$$Img(2,3) = 23 \rightarrow Img(2,3) = 0$$


Extra Question

As per our definition, what is the object that was segmented in the image?


Emoji?
Background?

Depends on the definition of segmentation Here: 255, if Img(u, v) > T \rightarrow Background was segmented

Masking

- Use the segmented image as mask for the original image.
 - Use the original image value for all segmented as 255

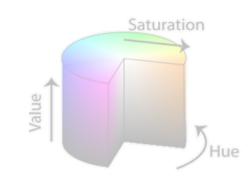
255	212	74	181	176	176	196	171	156
181	219		135	163	56		69	56
186	148	79	186	230	163	64	54	84
166	237	69	179	166	69	120	112	245
	194	194	179	107	117	99	87	
222		186	163	115	77	105		71
207	186						54	201
189	196	89	64	128	71	89	74	54

Content

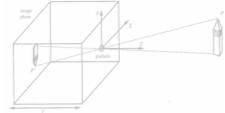
Task 1
Color Representation

Task 2 Camera Model

Task 3


Filter in der Image Processing

Task 4


Segmentation

Task 5

Iterative Closest Point (ICP) Algorithm

Iterative Closest Point

Iterative Closest Point (ICP) is a common algorithm for registering two sets A, B with a priori unknown assignment (Besl and McKay, 1992)

Example: Registration of two 3D point clouds

For each iteration k:

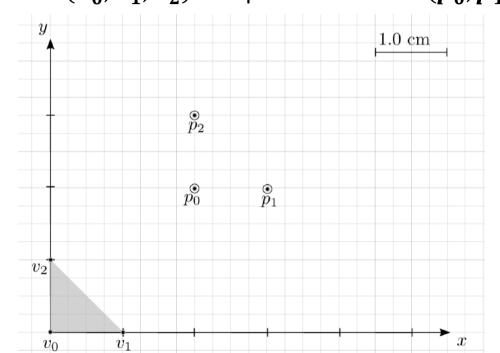
- For each point a_i from A, find point b_i from B that is closest to a_i
- Calculate a transformation T_k such that D_k is minimal, e.g. with (Horn, 1987):

$$D_k = \sum_i ||a_i - T_k \cdot b_i||^2$$

D_k combines translation and rotation

• Apply transformation T_k to all points from B (update)

Termination:


- Threshold for the difference $(D_{k-1} D_k)$ or
- Maximum number of iterations reached

Lecture Chapter 9 Slide 137

Task 5

Given: Triangle $V = (v_0, v_1, v_2)$ and point cloud $P = (p_0, p_1, p_2)$

Task 5

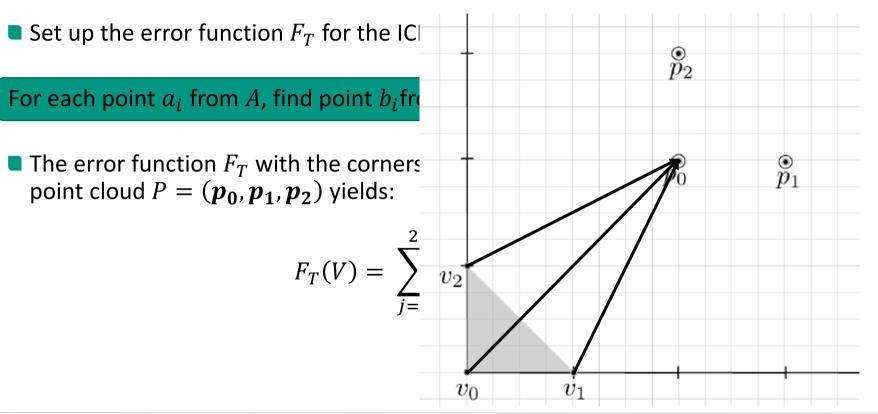
Given: Triangle $V = (v_0, v_1, v_2)$ and point cloud $P = (p_0, p_1, p_2)$ Set up the error function F_T for the ICP algorithm

To solve the problem the ICP-algorithm is to be applied using the steepest gradient approach. Determine the simplified error function:

$$F'_T = \| \boldsymbol{v_0} - \boldsymbol{p_0} \|^2$$

For the ICP algorithm from the second part of the task, specify the function that approximates V to P with a step size α . Draw the first two iterations for $\alpha = 0.25$ in Figure 3

Error Function



• Set up the error function F_T for the ICP algorithm

Error Function

Gradient of F'_t

To solve the problem the ICP-algorithm is to be applied using the steepest gradient approach. Determine the simplified error function:

$$F'_T = \| v_0 - p_0 \|^2$$

• Gradient of F'_T

Gradient of F'_t

To solve the problem the ICP-algorithm is to be applied using the steepest gradient approach. Determine the simplified error function:

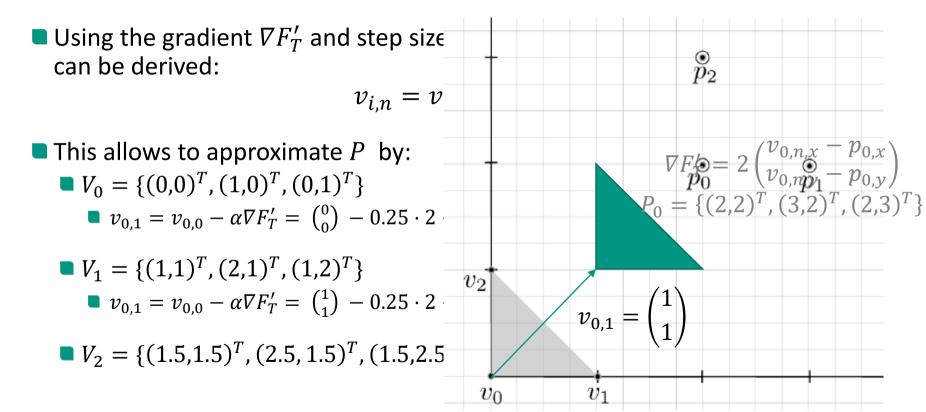
$$F'_T = \| v_0 - p_0 \|^2$$

Gradient of
$$F'_T$$

$$F'_T = \left(\sqrt{\left(v_{0,x} - p_{0,x}\right)^2 + \left(v_{0,y} - p_{0,y}\right)^2}\right)^2 = \left(v_{0,x} - p_{0,x}\right)^2 + \left(v_{0,y} - p_{0,y}\right)^2$$

$$\nabla F'_T = \left(\frac{\frac{d}{dx}F'_T}{\frac{d}{dy}F'_T}\right) = 2\left(\frac{v_{0,x} - p_{0,x}}{v_{0,y} - p_{0,y}}\right) = 2(v_0 - p_0)$$

1. + 2. Iteration



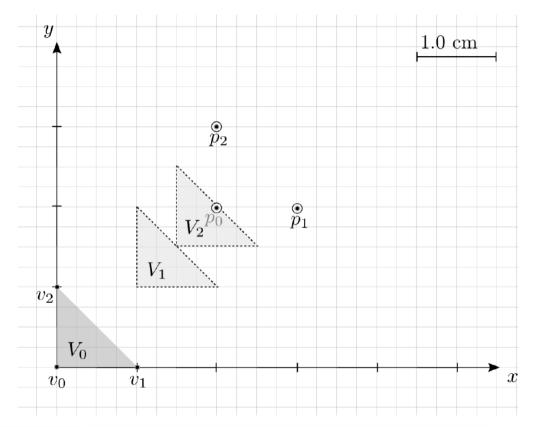
For the ICP algorithm from the second part of the task, specify the function that approximates V to P with a step size α . Draw the first two iterations for $\alpha = 0.25$ in Figure 3

1. + 2. Iteration

1. + 2. Iteration

For the ICP algorithm from the second part of the task, specify the function that approximates *V* to *P* with a step size α . Draw the first two iterations for $\alpha = 0.25$ in Figure 3

• With the gradient $\nabla F'_T$ below step width $\alpha = 0.25$ the following update function can be derived:


$$\boldsymbol{v}_{\boldsymbol{i},\boldsymbol{n}} = \boldsymbol{v}_{\boldsymbol{i},\boldsymbol{n-1}} - \alpha \nabla F_T'$$

- This allows to approximate *P* as follows:
 - $V_0 = \{(0,0)^T, (1,0)^T, (0,1)^T\}$
 - $V_1 = \{(1,1)^T, (2,1)^T, (1,2)^T\}$
 - $V_2 = \{(1.5, 1.5)^T, (2.5, 1.5)^T, (1.5, 2.5)^T\}$

The first 2 Interations

Extra Question

• What would happen in this task if we used $\alpha = 1$?

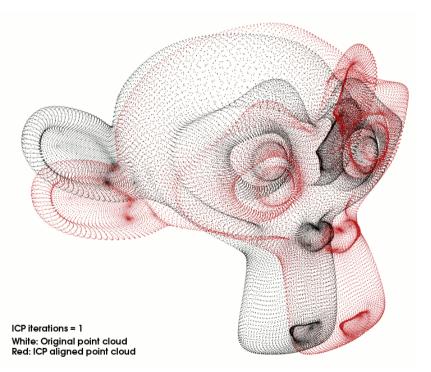
- a) Exact solution in a single step
- b) Faster convergence but still asymptotically
- c) Oscillation around of two solutions
- d) Result diverging from solution

Extra Question

• What would happen in this task if we used $\alpha = 1$?

- a) Exact solution in a single step
- b) Faster convergence but still asymptotically
- c) Oscillation around of two solutions
- d) Result diverging from solution

$$v_{i,n} = v_{i,n-1} - \alpha \nabla F'_T$$


$$\nabla F'_T = 2(v_0 - p_0)$$
•
$$v_{0,1}$$
•
$$v_{0,1}$$
•
$$v_{0,0}$$

Interaktives Iterative Closest Point

- In jeder Iteration versucht ICP eine möglichst optimale Annährung von 2 Punktwolken zu finden
- Sehr abhängig von der Qualität und der Ähnlichkeit der Punktwolken, sowie den Startbedingungen

https://pcl.readthedocs.io/projects/tutorials/en/latest/interactive_icp.html

Exam

Credit points: 6 ECTS

- Exam in winter term 2024/2025
 - Written exam in English (schriftlich)
 - Date: February 24, 2025, 08:00 10:00
 - Place will be announced in the lecture and in ILIAS
 - Registration: Campus-System, <u>https://campus.studium.kit.edu</u>
 - Last registration date: February 19, 2025

All information regarding lectures and exams will also be published on our homepage: <u>https://www.humanoids.kit.edu</u>

Exam – 120 minutes

- Compared to previous semesters: More time for the exam, namely 120min instead of 60min
- Expect, for example:
 - More in-depth tasks, requiring a deeper understanding and to think more
 - Longer tasks/calculations
 - More topics covered
- No additional material
 - Only writing utensils

